
AN OBJECT-ORIENTED OPTIMIZATION SYSTEM

G. S. Cunningham, K. M. Hanson, G. R. Jennings, Jr., and D. R. Wolf

Los Alamos National Laboratory, MS P940
Los Alamos, New Mexico 87545 USA

{cunning, kmh} @lanl.gov

ABSTRACT
We describe the implementation of a graphical pro-
gramming tool in the object-oriented language, Smalltalk-
80, that allows a user to construct a radiographic mea-
surement model. The measurement model can be used
to generate the measurements predicted by a given pa-
rameterized model of an experimental object. We also
describe extensions to the graphical programming tool
that allow it to be used to perform Bayesian inference
on very large sets of object parameters, given actual
experimental data, by optimizing the likelihood or pos-
terior probability of the parameters, given the actual
data.

Proc. IEEE Int. Conf. on Image Processing, Vol. III,
pp. 826-830, Austin, TX, November 13-16, 1994.

1. INTRODUCTION

The object-oriented (OO) paradigm has recently at-
tracted attention because of its promise for code re-
use and ease of maintainence, in addition to the nat-
ural and intuitive language it promotes for discussion
of software [?]. We have built and described an OO
graphical programming tool [?] that allows a user to
connect icons, which represent data transforms, on a
canvas in order to define a data-flow diagram that acts
on a user-defined object parameterization. In this pa-
per, we describe an extension of the graphical program-
ming tool that allows the user to interactively optimize
a 1D functional of the output of the data-flow diagram
with respect to object parameters. We discuss the ad-
vantages of programming the optimization tool in an
OO language.

We believe that the optimization tool will be useful
to scientists and engineers for orchestrating Bayesian
inference and hypothesis testing of geometric object
parameters given actual radiographic data [?]. The
general problem for which these tools are intended is
the determination of an object of unknown shape and
distribution, described by a user-defined parameteriza-
tion, given limited data generated by a well-characterized,

Supported by the United States Department of Energy under
contract number W-7405-ENG-36.

user-defined measurement system. The graphical pro-
gramming tool, in conjunction with a likelihood func-
tion, allows the user to define a complete model of a
measurement system. The maximum likelihood (ML)
estimate of the parameters that describe the experi-
mental object can be obtained using the optimization
tool. Maximum a posteriori (MAP) estimates can also
be obtained, if prior information is used.

2. THE OO PARADIGM

The OO paradigm is founded on the concept of an ob-
ject. Objects have responsibilities, or methods, and
data, or attributes. To talk about objects, either to
one another in software analysis or design, or to the
computer in a programming session, is natural and in-
tuitive, since we think in terms of objects. Attributes
are encapsulated by methods so that internal data stor-
age, accessing, and manipulation, is not important to
the “outside world”, which can only obtain information
about the attributes by messaging the object to per-
form some method. Encapsulation and messaging fa-
cilitate the construction of flexible, easy-to-understand
software modules. Classes are templates of objects, and
are contained in class hierarchies, wherein subclasses
inherit methods and attributes from superclasses, so
that code is re-used and sensibly organized. Finally,
type-casting is eliminated with the use of dynamic bind-
ing.

We are using Smalltalk-80 and the VisualWorks pro-
gramming environment from ParcPlace Systems in con-
junction with C, Fortran, and X-Windows. Smalltalk-
80 is a pure object-oriented programming language,
which truly encourages object-oriented thinking. How-
ever, its poor performance in executing loops and nu-
merical computations has forced us to use C and For-
tran for numerically intensive computations and X-Windows
for loop-intensive graphics.

826

Figure 1: The canvas for the graphical programming
tool.

3. AN OO GRAPHICAL PROGRAMMING
TOOL

Figure 1 shows a typical example of the graphical pro-
gramming tool, which operates as follows. The user is
presented with a canvas, on which appear buttons that
allow the user to add items to, or delete items from,
the canvas. The user can add or delete Transforms
and Connections. Transforms map input Data to
output Data and are represented on the screen by an
icon. The user specifies the data-flow by connecting
one Transform to another using a Connection, which
is represented on the screen as a set of connected line
segments.

The Transforms are “living” objects and the user
can interact with them in several ways. He can see
a description of a Transform and change the param-
eters that define it. The user can also message the
Transform to display its output. This message is for-
warded to the Transform’s output attribute, which is
messaged to display itself. The fact that the Transform
objects are alive distinguishes this graphical program-
ming tool from one that allows a user to construct and
visualize a script that contains a sequence of actions to
be executed in a certain order.

We have written classes for several categories of
Transforms, including MultiInputSingleOutput (Add,
Multiply, Subtract), SingleInputSingleOutput
(Convolution, Exponential, Log, Log10, SqRt, Sin,
Cos, LineIntegral, ParallelLineIntegral) and no-

input single-output (Parameter and its subclasses).
Parameter and its subclasses define the object model

that is the input to the measurement model defined by
the data-flow diagram. For example, a
GeometricObjectModel has a listOfComponents that
might contain a Polygon2D, a Bezier2D, a Grid2D, and
a UniformGrid2D.

4. AN OO OPTIMIZER

Let the output of the measurement system model spec-
ified by the data-flow diagram be predicted data, d̂(θ),
where θ is a set of parameters that defines the object
model. For example, θ = {θij} might be the set of den-
sity values in a UniformGrid2D of fixed size. If the user
has data, d, that are generated by a measurement sys-
tem that corresponds well to the measurement system
model, plus some additive noise, n, with probability
distribution PN (n), then PN (d − d̂(θ)) is a 1D func-
tional on the output of the data-flow diagram, called
the likelihood function. Optimizing PN (d − d̂(θ)) over
θ produces the ML estimate of θ given the data, d. If
PΘ(θ) is a prior probability distribution over θ, then
φ(θ) = log[PN (d − d̂(θ))] + log[PΘ(θ)] is a 1D func-
tional called the log posterior. Maximizing φ(θ) over
θ produces the MAP estimate of θ, given the data, d.
Thus, the capability for optimizing 1D functionals of
data-flow diagrams includes the capability for solving
Bayesian inference problems.

We have extended the graphical programming tool
to include Gaussian likelihood functions and the ability
to optimize them with respect to object-model param-
eters using conjugate gradient (for unconstrained prob-
lems) and gradient descent (for constrained problems)
methods.

4.1. The reverse adjoint method

We obtain the gradient of the log likelihood with re-
spect to object model parameters (∂φ

∂θi
) using a reverse

adjoint technique, which implements the chain-rule for
differentiation from back to front [?].

For example, let us define a simple measurement
model, such as that shown in Fig. 1, wherein d̂(x) de-
notes the data predicted by taking line integrals of a
UniformGrid2D object model, x, using transform L, to
produce pathlengths, y, which are then pointwise ex-
ponentiated to produce attenuations, z, and convolved
with a point spread function represented by the matrix
H to finally produce d̂(x). Then

d̂(x) = H(E(L(x))) (1)

827

is an approximation to a true radiographic measure-
ment system that can be easily built using the graphi-
cal programming tool.

If our actual data are d, and we assume that they
are produced by adding white gaussian noise to the
data predicted by the true object xTRUE, then φ is just
the norm of d̂ − d, and the derivative of φ w.r.t.
d̂ is just d∗ = 2(d̂ − d). The derivative of φ w.r.t.
z is just z∗ = HT d∗, that is, the adjoint operator for
the Convolution acting on the the Data passed back
to it by the Likelihood. Similarly, the derivative of φ
w.r.t.
y is just y∗ = − exp−y ·z∗ = ET

y z∗, where · is point-
wise multiplication and y is the current input to the
Exponential. Finally, the derivative of φ w.r.t. the
object parameters x can be obtained by “backproject-
ing” the adjoint Data y∗ to produce x∗ = LT y∗.

Thus, the derivative of φ w.r.t. x can be written:

�φ = LT (ET
y (HT (2(d̂ − d)))) (2)

This equation suggests a “reverse-adjoint” implemen-
tation. Each Transform must know how to calculate
the derivative of its outputs w.r.t. its inputs. These are
the “sensitivity matrices” LT , ET

y ,HT , which may well
depend on the current input state of the Transform.
Rather than calculating the sensitivity matrices explic-
itly and then having them operate on the adjoint Data
set passed from the upstream Transform, we write ad-
joint operator codes that automatically process the ad-
joint Data set to produce a new adjoint Data set with-
out calculating the sensitivity matrices explicitly. So,
for example, we don’t explicitly calculate ET

y , which is
diagonal but rather use the adjoint Data z∗ to produce
the adjoint Data y∗ = − exp−y ·z∗ = ET (y)z∗, which
only requires a vector multiply.

4.2. Extending the class hierarchy

Extending the responsibility of Transforms to include
an associated adjoint gradient operation is easily acco-
modated in our OO programming environment. The
adjoint method takes Data that has the structure of a
Transform output and maps it into Data that has the
structure of a Transform input. Dual to the data-flow
mode of operation, where outputs of the data-flow di-
agram query previous Transforms to generateOutput
until eventually Parameters are encountered and just
return themselves, in the gradient-flow mode of opera-
tion Parameters query forward Transforms to
generateAdjointOutput until eventually a Likelihood
is encountered and returns the gradient of itself with re-
spect to the present state of its input. Thus, the gradi-
ents flow backwards, or in reverse, until each Parameter

eventually returns the gradient of the Likelihood with
respect to itself.

Connections are also modified in order to propogate
Data in both directions. When a Connection is told to
getData it gets the Data from the previous Transform
and sends it to the one upstream requesting it for input.
When a Connection is told to getAdjointData, it gets
the adjointData from the Transform upstream and
sends it to the Transform downstream, requesting it
as an adjointInput.

Note that, in general, computing the adjoint gra-
dient operator requires that the Transform know the
current state of its input, since the derivative may well
depend on the input (the Exponential, e.g.). Thus,
it is natural to bundle the Transform with its current
state (stored in its input) as we have done.

Parameters are given extended responsibilities in
order to accomodate the existing optimization strate-
gies. In particular, all Parameters must be responsi-
ble for add’ing themselves to and subtract’ing them-
selves from any instance of the same Class. Parameters
also must be able to multiplyByScalar:aScalar, find
their norm and determine their
innerProductWith:anObject for anObject that is an
instance of the same class. Furthermore, we have made
some Parameters capable of projecting themselves onto
certain constraint sets, namely upper and lower bounds.

Since addition, subtraction, multiplication by scalar,
norm, inner product, and constraint satisfaction are all
the responsibility of Parameters, the Optimizer logic
can be applied to very different types of optimizations
problems, e.g. one or two-dimensional de-convolution,
tomographic inversion, inversion from noisy nonlinear
point functions, etc. The logic in the Optimizer can
work for any vector space, regardless of its detailed
structure. The detailed structure of the Parameters
being optimized is taken care of in the implementation
of the fundamental vector space operations (addition,
multiplication by scalar, etc.). The encapsulation and
polymorphism provided by the Parameters allows us to
concentrate on building and adapting robust, abstract,
optimization algorithms that can be widely employed.

4.3. Capabilities

The user specifies that a Parameter is to be optimized
by connecting it to the Optimizer, as in Fig. 1. The
user can specify an optimization strategy (conjugate
gradient or gradient descent), tolerances, and maxi-
mum number of iterations for the global search and
each line minimization, and gets feedback on the cur-
rent step size, number of global iterations, and the
number of likelihood evalutions thus far (see Fig. 2).

828

Figure 2: The interface for the optimizer.

At any point during the optimization, the user can
interrupt the Optimizer so that he can see the present
state of the solution (and Data predicted by the present
solution) by using the graphical programming tool, which
contains icons that represent the “live” Data being op-
timized. The present solution can be modified inter-
actively using modelling tools that are called by inter-
acting with the icon that represents the Parameter of
interest. Transforms can also be changed at any time.
The log likelihood and likelihood can be plotted as a
function of step along the current gradient direction,
and the effect of stepping along the gradient from the
present solution for various step sizes can be visualized
easily. These capabilities are very useful for under-
standing how the optimization is working, as well as
for guiding the Optimizer toward a solution.

Note that a “global” derivative of φ w.r.t. object
parameters is obtained by “local” message-passing and
methods operating on encapsulated data. For example,
one can change the fundamental representation of the
object described above by having a Polygon2D parame-
terization θ that feeds into a ConvertToUniformGrid2D
Transform to produce a UniformGrid2D x. One can
use the previous graphical program as it is, and just
insert the new Transform “before” x. Then x∗, the
derivative of φ w.r.t. x, can be backpropogated to pro-
duce θ∗, the derivative of φ w.r.t. θ. The ability to
cascade models of the experimental object suggests a
“level of detail” approach to optimization (called multi-
scale if the successfully-refined parameterizations are
UniformGrid2Ds with smaller pixels and called multi-
grid if the parameterizations are successfully-refined ge-

Figure 3: Original object (top) and two reconstructions
(bottom) from six noiseless views; without constraints
on the left and with minimum- and maximum-value
constraints on the right.

ometrical descriptions).
Finally, the Optimizer can be used to probe the

confidence that the user should have in the final solu-
tion. The user can select two states of the Parameter
set, say P1 and P2, and ask the Optimizer to provide a
one-dimensional plot of the likelihood as a function of
the new Parameter set, αP1 +(1−α)P2. For example,
one could perturb a Polygon2D solution, P1, by mov-
ing a boundary vertex to a new location to produce P2.
Plotting the likelihood as a function of αP1+(1−α)P2

would then reveal the confidence one should have in the
position of that boundary vertex – a broad likelihood
means that there are many positions of the boundary
point that are equally likely, and so the position of that
vertex should not be trusted.

4.4. An example

Two example reconstructions are shown in Fig. 3. The
original 128x128 object (on the top) has an attenuation
of 6.0 on the interior of its boundary and 0.0 outside.
The data used in the reconstruction are obtained by
exponentiating the projections from 6 views (256 pro-
jection bins per view) and convolving the projections
with a gaussian blur function (σ = 4 pixels). No noise
is added for this simple demonstration. Both recon-

829

structions use the measurement model in Fig. 1, with
the known σ for the blur function. The reconstruction
on the bottom left of Fig. 3 is obtained by imposing a
non-negativity constraint on the reconstructed atten-
uation values, and the reconstruction on the bottom
right is obtained using non-negativity and an upper
bound constraint of 6.0.

5. SUMMARY

The advantages of an OO language are enormous in
the context of graphical programming, graphical ob-
ject modeling, and optimization. Not only did the OO
paradigm make extending the graphical programming
tool to include optimization easier than we expected,
it also stimulated our creativity. The potential exten-
sions we envision to interactive, graphical optimization
using the foundation we have discussed in this paper
are very exciting.

Our immediate future plans include extending the
2D radiographic measurement model to 3D polyhedra
and volumetric grids. We also plan to incorporate
other measurement models, such as range data (that
measures exterior surface location) and surface velocity
data. Ultimately, we envision 3D time-evolving object
and measurement models that will be used to fuse data
from a variety of experimental diagnostics.

6. REFERENCES

[1] Cunningham, G.S., Hanson, K.M., Jennings, Jr.
G.R., Wolf, D.R., “An object-oriented implemen-
tation of a graphical programming system,” to be
published in Proc. SPIE 2163, 1994.

[2] Hanson, K.M., “Bayesian reconstruction based on
flexible prior models,” J. Opt. Soc. Am. A 10,
1993, pp. 997-1004.

[3] Taylor, D. A., Object-Oriented Technology: A
Manager’s Guide, Addison-Wesley, 1990.

[4] Thacker, W.C., “Automatic differentiation from
an oceanographer’s perspective,” Automatic Dif-
ferentiation of Algorithms: Theory, Implementa-
tion, and Application, ed. A. Griewank and G.
Corliss, SIAM, 1991, 360 ff.

830

